Skip to content

When you choose to publish with PLOS, your research makes an impact. Make your work accessible to all, without restrictions, and accelerate scientific discovery with options like preprints and published peer review that make your work more Open.

PLOS BLOGS EveryONE

Geophysics for All: PLOS ONE at AGU

The American Geophysical Union Fall Meeting has arrived in San Francisco, and PLOS ONE is excited to be there at booth 1137 from Tuesday through Friday.

Geophysics is quite a broad field, including earth science, climate science, space science, and more. For this post, instead of trying to cover the whole spectrum, we decided to highlight one particularly explosive topic: volcanoes.

For ten days in August 2006, a submarine volcano in Tonga erupted after 22 years of dormancy, producing a temporary volcanic island. The eruption also created a pumice raft, which is exactly what it sounds like: a floating raft made of pumice, a volcanic rock. In a paper published this July, researchers reported that this pumice raft helped disperse more than 80 species, including barnacles, sponges, and corals, over 3,000 miles in 7-8 months. The authors conclude that such pumice rafting facilitates “massive transport of genetic material” and provides “lines of internal communication” between distant ocean regions, which may have implications for conservation and the spread of invasive pest species.

The end results of volcanic eruptions may be the most obviously noticeable part of the process, but the events preceding an eruption are also an active area of research. For example, the researchers behind a study published in May investigated how long huge pools of molten rock, or giant magma bodies, remain buried under the earth’s crust before they cause volcanic superuptions. Previous work indicated that one particular giant magma body, which was responsible for the Long Valley caldera in California, was long-lived and slow-evolving. The new work describes analysis of quartz samples from this area and suggests that the giant magma body was in fact relatively short-lived. The authors conclude that giant magma bodies are “rather ephemeral features, which quickly and effectively destroy themselves during supereruptions.”

These two studies provide just a small taste of the highly varied research in geophysics, and we’re excited to hear more at the meeting. We’re also excited to have representatives from PLOS Currents Disasters there to meet you. We hope you come visit us at booth 1137, and look forward to seeing you there.

Citations:

Bryan SE, Cook AG, Evans JP, Hebden K, Hurrey L, et al. (2012) Rapid, Long-Distance Dispersal by Pumice Rafting. PLoS ONE 7(7): e40583. doi:10.1371/journal.pone.0040583

Gualda GAR, Pamukcu AS, Ghiorso MS, Anderson AT Jr, Sutton SR, et al. (2012) Timescales of Quartz Crystallization and the Longevity of the Bishop Giant Magma Body. PLoS ONE 7(5): e37492. doi:10.1371/journal.pone.0037492

Leave a Reply

Your email address will not be published. Required fields are marked *


Add your ORCID here. (e.g. 0000-0002-7299-680X)

Back to top